2025
[1]
T. Dirks et al., “The atmospheric pressure capillary plasma jet is well-suited to supply H2O2for plasma-driven biocatalysis,” Jan. 2025 [Online]. Available: https://doi.org/10.1101/2025.01.07.631711
[2]
T. Dirks et al., “Plasma-driven biocatalysis using the cytochrome P450 enzyme CYP152BSβ,” Jan. 2025 [Online]. Available: https://doi.org/10.1101/2025.01.09.631812
2024
[1]
S. Burhenn, J. Golda, J. Kratzer, S. Brandt, and J. Held, “Characterization of a co-planar dielectric barrier discharge design as a plasma source for trace element detection by atomic spectrometry,” Spectrochimica acta B, vol. 213, Feb. 2024, doi: 10.1016/j.sab.2024.106884.
[2]
E. Mestre et al., “Outside Front Cover: Plasma Processess and Polymers 4/2024,” Plasma processes and polymers, vol. 21, no. 4, Apr. 2024, doi: 10.1002/ppap.202370033.
[3]
S. Schüttler, J. Kaufmann, and J. Golda, “Nitrogen fixation and H2O2 production by an atmospheric pressure plasma jet operated in He–H20–N2–O2 gas mixtures,” Plasma processes and polymers, vol. 21, no. 8, May 2024, doi: 10.1002/ppap.202300233.
[4]
S. Chur, L. Kulik, V. Schulz-von der Gathen, M. Böke, and J. Golda, “Self-Organizing Sub-μm Surface Structures Stimulated by Microplasma Generated Reactive Species and Short-Pulsed Laser Irradiation,” ACS omega, vol. 9, no. 27, pp. 29234–29243, Jun. 2024, doi: 10.1021/acsomega.3c10033.
[5]
H. van Impel, D. Steuer, R. Labenski, V. Schulz-von der Gathen, M. Böke, and J. Golda, “Electric field components within a micro-scaled DBD measured by Stark shifting and splitting of helium lines,” Plasma sources science & technology, vol. 33, no. 10, Oct. 2024, doi: 10.1088/1361-6595/ad7d34.
[6]
R. Labenski, D. Steuer, H. van Impel, M. Böke, V. Schulz-von der Gathen, and J. Golda, “Novel methods for determination and manipulation of surface charges performed on an atmospheric DBD microplasma,” Plasma sources science & technology, vol. 33, Sep. 2024, doi: 10.1088/1361-6595/ad802d.
[7]
S. Schüttler, N. Eichstaedt, and J. Golda, “Tuning plasma chemistry by various excitation mechanisms for the H2O2 production of atmospheric pressure plasma jets,” Journal of physics D, vol. 58, Sep. 2024, doi: 10.1088/1361-6463/ad816a.
[8]
S. Schüttler, A. L. Schöne, E. Jeß, A. R. Gibson, and J. Golda, “Production and transport of plasma-generated hydrogen peroxide from gas to liquid,” Physical chemistry, chemical physics, vol. 26, no. 10, pp. 8255–8272, Feb. 2024, doi: 10.1039/d3cp04290a.
[9]
D. Steuer et al., “Mode transition in a helium barrier discharge with oxygen admixtures: Insights into a micro cavity plasma array reactor,” Journal of Physics D: Applied Physics, Dec. 2024, doi: 10.1088/1361-6463/ad9ebe. [Online]. Available: https://doi.org/10.1088/1361-6463/ad9ebe
2023
[1]
D. Steuer, H. van Impel, V. Schulz-von der Gathen, M. Böke, and J. Golda, “Spatially and temporally resolved atomic oxygen densities in a micro cavity plasma array,” Plasma sources science & technology, vol. 32, no. 2, Feb. 2023, doi: 10.1088/1361-6595/acb9b9.
[2]
Y. Liu et al., “Local enhancement of electron heating and neutral species generation in radio-frequency micro-atmospheric pressure plasma jets: the effects of structured electrode topologies,” Plasma sources science & technology, vol. 32, no. 2, Feb. 2023, doi: 10.1088/1361-6595/acb9b8.
[3]
S. Schüttler, L. Jolmes, E. Jeß, K. Tschulik, and J. Golda, “Validation of in situ diagnostics for the detection of OH and H2O2 in liquids treated by a humid atmospheric pressure plasma jet,” Plasma processes and polymers, vol. 2023, Jul. 2023, doi: 10.1002/ppap.202300079.
[4]
E. Mestre et al., “Comparison of CO production and Escherichia coli inactivation by a kHz and a MHz plasma jet,” Plasma processes and polymers, vol. 21, no. 3, Dec. 2023, doi: 10.1002/ppap.202300182.
[5]
P. Preissing, A. von Keudell, and J. Golda, “Reactive species transport and surface structuring by short-pulsed laser irradiation for plasma catalysis,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2023.
2022
[1]
D. Steuer, H. van Impel, A. R. Gibson, M. Böke, V. Schulz-von der Gathen, and J. Golda, “State enhanced actinometry in the COST microplasma jet,” Plasma sources science & technology, vol. 31, no. 10, Sep. 2022, doi: 10.1088/1361-6595/ac90e8.
[2]
S. Dzikowski, D. Steuer, S. Iséni, J. Golda, M. Böke, and V. Schulz-von der Gathen, “Electric field strengths within a micro cavity plasma array measured by Stark shift and splitting of a helium line pair,” Plasma sources science & technology, vol. 31, no. 6, Jun. 2022, doi: 10.1088/1361-6595/ac7820.
[3]
T. Winzer, D. Steuer, S. Schüttler, N. Blosczyk, J. Benedikt, and J. Golda, “RF-driven atmospheric-pressure capillary plasma jet in a He/O2 gas mixture : multi-diagnostic approach to energy transport,” Journal of applied physics, vol. 132, no. 18, Nov. 2022, doi: 10.1063/5.0110252.
[4]
F. N. de Oliveira Lopes, H. Krabbe, D. Told, R. Grauer, and J. Golda, “Geometrical formulation of hybrid kinetic-gyrokinetic hamiltonian field theory for turbulence in laboratory and astrophysical plasma,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2022.
2021
[1]
D. Steuer et al., “2D spatially resolved O atom density profiles in an atmospheric pressure plasma jet: from the active plasma volume to the effluent,” Journal of physics D, vol. 54, no. 35, Jun. 2021, doi: 10.1088/1361-6463/ac09b9.
2020
[1]
J. Golda, B. Biskup, V. Layes, T. Winzer, and J. Benedikt, “Vacuum ultraviolet spectroscopy of cold atmospheric pressure plasma jets,” Plasma processes and polymers, vol. 17, no. 6, Jan. 2020, doi: 10.1002/ppap.201900216.
[2]
F. Riedel et al., “Reproducibility of ‘COST reference microplasma jets,’” Plasma sources science & technology, vol. 29, no. 9, Sep. 2020, doi: 10.1088/1361-6595/abad01.
[3]
J. Golda, J. Held, and V. Schulz-von der Gathen, “Comparison of electron heating and energy loss mechanisms in an RF plasma jet operated in argon and helium,” Plasma sources science & technology, vol. 29, no. 2, Feb. 2020, doi: 10.1088/1361-6595/ab6c81.
[4]
J. Golda, K. Sgonina, J. Held, J. Benedikt, and V. Schulz-von der Gathen, “Treating surfaces with a cold atmospheric pressure plasma using the COST-Jet,” Journal of visualized experiments, vol. 165, Nov. 2020, doi: 10.3791/61801.
2019
[1]
J. Golda, F. Kogelheide, P. Awakowicz, and V. Schulz-von der Gathen, “Dissipated electrical power and electron density in an RF atmospheric pressure helium plasma jet,” Plasma sources science & technology, vol. 28, no. 9, Sep. 2019, doi: 10.1088/1361-6595/ab393d.
[2]
G. Willems et al., “Corrigendum: Characterization of the effluent of a He/O2 micro-scaled atmospheric pressure plasma jet by quantitative molecular beam mass spectrometry (2010 New J. Phys. 12 013021),” New journal of physics, vol. 21, no. 5, May 2019, doi: 10.1088/1367-2630/ab1dfc.
[3]
Y. Gorbanev, J. Golda, V. Schulz-von der Gathen, and A. Bogaerts, “Applications of the COST plasma jet: more than a reference standard,” Plasma, vol. 2, no. 3, pp. 316–327, Jul. 2019, doi: 10.3390/plasma2030023.
2018
[1]
J. Golda et al., “Corrigendum: Concepts and characteristics of the ‘COST Reference Microplasma Jet’ (2016 J. Phys. D: Appl. Phys. 49 084003),” Journal of physics D, vol. 52, no. 2, p. 029503, Nov. 2018, doi: 10.1088/1361-6463/aae8c8.
[2]
J.-W. Lackmann et al., “Chemical fingerprints of cold physical plasmas: an experimental and computational study using cysteine as tracer compound,” Scientific reports, vol. 8, no. 1, May 2018, doi: 10.1038/s41598-018-25937-0.
2017
[1]
J. Golda, A. von Keudell, and P. Awakowicz, “Cross-correlating discharge physics, excitation mechanisms and plasma chemistry to describe the stability of an RF-excited atmospheric pressure argon plasma jet,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2017.
2016
[1]
V. Felix et al., “Origin of microplasma instabilities during DC operation of silicon based microhollow cathode devices,” Plasma sources science & technology, vol. 25, no. 2, pp. 1–8, 2016, doi: 10.1088/0963-0252/25/2/025021.
[2]
J. Golda et al., “Concepts and characteristics of the ‘COST reference microplasma jet,’” Journal of physics D, vol. 49, no. 8, Jan. 2016, doi: 10.1088/0022-3727/49/8/084003.
[3]
D. Marinov et al., “Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence,” Plasma sources science & technology, vol. 25, no. 6, Nov. 2016, doi: 10.1088/0963-0252/25/6/06lt03.
2015
[1]
S. Schneider et al., “Summarizing results on the performance of a selective set of atmospheric plasma jets for separation of photons and reactive particles,” Journal of physics D, vol. 48, no. 44, Oct. 2015, doi: 10.1088/0022-3727/48/44/444001.
[2]
S. Kelly, J. Golda, M. M. Turner, and V. Schulz-von der Gathen, “Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet,” Journal of physics D, vol. 48, no. 44, Oct. 2015, doi: 10.1088/0022-3727/48/44/444002.
2014
[1]
M. K. Kulsreshath, J. Golda, V. Felix, V. Schulz-von der Gathen, and R. Dussart, “Ignition dynamics of dry-etched vertical cavity single-hole microdischarge reactors in ac regime operating in noble gases,” Journal of physics D, vol. 47, no. 33, 2014, doi: 10.1088/0022-3727/47/33/335202.
[2]
M. K. Kulsreshath, J. Golda, V. Schulz-von der Gathen, and R. Dussart, “Width-dependent interaction of trench-like microdischarges arranged in sub-arrays on a single silicon-based chip,” Plasma sources science & technology, vol. 23, no. 4, 2014, doi: 10.1088/0963-0252/23/4/045012.
[3]
J. Golda, M. Kulsreshath, H. Böttner, V. Felix, R. Dussart, and V. Schulz-von der Gathen, “Circular emission and destruction patterns on a silicon-based microdischarge array,” IEEE transactions on plasma science / Institute of Electrical and Electronics Engineers, vol. 42, no. 10, pp. 2646–2647, 2014, doi: 10.1109/tps.2014.2337657.